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A B S T R A C T

Real-world multinational e-commerce companies, such as Amazon and eBay, serve in multiple countries and re-
gions. Some markets are data-scarce, while others are data-rich. In recent years, cross-market recommendation
(CMR) has been proposed to bolster data-scarce markets by leveraging auxiliary information from data-rich
markets. Previous CMR algorithms have employed techniques such as sharing market-agnostic parameters or
incorporating inter-market similarity to optimize the performance of CMR. However, the existing approaches
have several limitations: (1) They do not fully utilize the valuable information on item co-occurrences obtained
from data-rich markets (such as the consistent purchase of mice and keyboards). (2) They ignore the issue of
negative transfer stemming from disparities across diverse markets. To address these limitations, we introduce
a novel attention-based model that exploits users’ historical behaviors to mine general patterns from item
co-occurrences and designs market-specific embeddings to mitigate negative transfer. Specifically, we propose
an attention-based user interest mining module to harness the potential of common items as bridges for mining
general knowledge from item co-occurrence patterns through rich data derived from global markets. In order
to mitigate the adverse effects of negative transfer, we decouple the item representations into market-specific
embeddings and market-agnostic embeddings. The market-specific embeddings effectively model the inherent
biases associated with different markets, while the market-agnostic embeddings learn generic representations of
the items. Extensive experiments conducted on seven real-world datasets illustrate our model’s effectiveness.1
Our model outperforms the suboptimal model by an average of 4.82%, 6.82%, 3.87%, and 5.34% across four
variants of two metrics. Extensive experiments and analysis demonstrate the effectiveness of our proposed
model in mining general item co-occurrence patterns and avoiding negative transfer for data-sparse markets.
1. Introduction

Online shopping has become the mainstream way of e-commerce
today. Compared with physical stores, online businesses provide con-
venience for customers [1,2]. Online shopping systems need recom-
mendation algorithms to help users solve the problem of information
overload [3–5]. Traditional academic and industrial recommendation
methods utilize data from a single market to train models and serve
the corresponding market. In the era of globalization, multinational
e-commerce behemoths such as Amazon, Shopee, and eBay have ex-
panded their operations across multiple regions, thereby gaining access
to a wealth of diverse market data. To fully exploit the potential
inherent in these multiple markets, the concept of cross-market recom-
mendation (CMR) has emerged [6]. Intuitively, these parallel markets
share common items while having distinct users. It is important to
highlight that while certain markets boast abundant data resources,
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1 Our codes and checkpoints are available at https://github.com/laowangzi/ACMR.

others grapple with the challenges posed by data scarcity. In response
to this, researchers have recently put forth CMR models that adeptly
harness information derived from parallel markets, thereby enhancing
the performance of recommendation systems.

As illustrated in Fig. 1, two significant limitations are typically
overlooked by previous CMR methods. First, the widespread cross-
market co-occurrence of items is ignored by most existing methods.
These shared items across parallel markets act as intuitive bridges for
knowledge transfer. The historical behaviors of users reveals patterns
of item co-occurrence that could serve as a foundation for knowl-
edge transfer between markets. Unfortunately, current methods do not
explicitly mine and utilize this essential general knowledge. Second,
market-specific user interests generate interference in the knowledge
transfer process, leading to a degradation in recommendation perfor-
mance. This issue, widely known as ‘‘negative transfer’’, remains largely
vailable online 16 April 2024
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Fig. 1. A simple illustration of item co-occurrences and noises in CMR. The blue dashed box delineates the co-occurrence of a mouse and keyboard, symbolizing a piece of
general knowledge that is widely applicable across diverse markets. Conversely, the red dashed box illustrates market noises, which are a result of market-specific variations in
user interests. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
unaddressed in prior research. For example, Hamed and Mohammad
et al. [6] proposed a NeuMF [7]-based method, named FOREC, which
is designed for CMR in a market-agnostic parameter way. They choose
a market as the primary source for training the NeuMF model as
the shared bottom and then fork multi-layer perceptrons as specific
heads for each target market. However, NeuMF-based models face
challenges in capturing item co-occurrence relationships, which are
sources of direct information from the additional markets. Cao et al. [8]
proposed an item similarity-based method, called M3Rec, which mines
two inter- and intra-market similarities using multiple markets data.
Then, they leverage the similarities as prior knowledge to fine-tune all
local markets. However, this approach overlooks the need to mitigate
negative transfer effects that may arise when inter-market similarity
exhibits a negative correlation.

To address these challenges, we propose an Attentive Cross-Market
Recommendation model called ACMR, which improves recommenda-
tion performance by capturing item co-occurrence across markets and
avoiding negative transfer. Unlike the cross-market knowledge transfer
strategies used in previous studies, our method seeks to mine preva-
lent market-agnostic item co-occurrence in users’ historical behaviors.
Specifically, we use the self-attention mechanism to capture the general
knowledge of item co-occurrences provided by the massive amounts
of data from parallel markets. Therefore, our model can achieve bet-
ter knowledge transfer and effectively utilize information from global
markets. Furthermore, we introduce an Explicit User Modeling com-
ponent, which leverages attention-processed item sequences to model
user interests. To prevent negative transfer resulting from mutual noisy
interference of diverse markets, we decouple item representations into
market-agnostic embeddings and market-specific embeddings. Market-
specific embeddings are used to model the bias of the specific market to
avoid the negative transfer problem, while market-agnostic embedding
learns the inherent characteristics of items. Our contributions are as
follows:

• We introduce the ACMR, which enhances knowledge transfer
by mining widespread item co-occurrences across parallel mar-
kets. We alleviate the negative transfer problem in the CMR
task by decoupling the item representation into a market-specific
2

representation and a market-agnostic representation. Our model
maximizes the reuse of global market information while avoiding
mutual interference between markets.

• Extensive experiments are conducted on seven national markets
across multiple continents. We compare our model among five
types of baselines using two metrics, which include traditional
recommendation models, attention-based recommendation mod-
els, cross-market recommendation models, cross-domain recom-
mendation models, and multi-domain recommendation models.
The experimental results consistently highlighted the superior
performance of the proposed model.

• We conduct thorough ablation experiments to showcase the effec-
tiveness of our proposed key components. Our empirical findings
validate that our attention-based model is adept at capturing item
co-occurrence across various markets. We also find that market-
specific embeddings significantly mitigate the negative transfer
problem in data-sparse markets. Visualization of the learned item
representations reveals that our method effectively maps item
representations to a consistent vector space, which demonstrates
the effectiveness of ACMR in cross-market item representation
learning.

The remainder of this paper is organized as follows: Section 2 dis-
cusses related works. The preliminaries and symbol notions are given
in Section 3. Section 4 describes the details and training process of
ACMR. The experimental results and analysis are provided in Section 5.
Section 6 is the presentation of conclusions and future work.

2. Related work

2.1. Cross-market and cross-domain recommendation

Cross-domain recommendation (CDR) and CMR share the same
goal: they both aim to improve recommendation performance by lever-
aging external information from other categories or markets. Simi-
lar to general cross-domain tasks [9,10], the key to CDR and CMR
is effectively leveraging knowledge transfer to improve the perfor-
mance of the model in the target domain. However, the assump-
tions of CMR and CDR are different. CMR assumes that user sets
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in each market are disjoint while sharing the same item set across
markets. For CDR, the situation is reversed: the users are shared across
the domains while the items are disjoint. For example, Contrastive
Cross-Domain Sequential Recommendation (C2DSR) [11] jointly mine
the single- and cross-domain user preferences by maximizing the mu-
tual information between the domains. Personalized Transfer of User
Preferences for Cross-domain Recommendation (PTUPCDR) [12] pro-
poses a meta-network that generates personalized bridge functions to
transfer personalized preferences across domains. In order to obtain
de-biased representations, CDRIB [13] utilizes the information bot-
tleneck principle to encode domain-shared information, allowing for
recommendations to be made in both source and target domains by
jointly considering domain interactions and de-bias pre-trained rep-
resentations. MetaCAR [14] proposes a Content-Aware cross-domain
recommendation method to improve model performance through meta-
augmentation. Further research has focused on mitigating biases and
transferring knowledge across different domains [15,16]. Cross-domain
recommendation models are commonly used to address the cold-start
problem in the target domain [17–19]. Multi-domain recommenda-
tion (MDR) shares similar core technology with CDR, but with the
goal of improving performance across all interactive domains, rather
than just transferring knowledge in a specific direction [20]. CDR
methods can be adapted to the MDR problem by treating each do-
main as the target domain. Additionally, multi-task approaches such
as Shared-Bottom [21], Cross-Stitch [22], and MMoE [23] can be
applied to tackle the MDR problem by considering each domain as a
task. The work on MDR is largely inspired by multi-task learning. For
example, CMoIE [24] extends the MMoE framework by incorporating
conflict resolution modules. STAR [25] separates the model parame-
ters into shared and domain-specific parts, utilizing a star topology
with shared centered parameters and domain-specific parameters for
different domains.

To our knowledge, the most closely related work are two CMR meth-
ods: FOREC [6] and M3Rec [8]. The FOREC first pre-train a market-
agnostic NeuMF on multiple markets as the shared bottom. They claim
this step generates a generalized recommendation model with signi-
ficative internal representations, which maximize the reusability of
parameters translating into target market adaptation. Then, the FOREC
forks multi-layer perceptrons as the market-specific head and fine-
tunes the model on the target market. In addition, Bhargav et al. [26]
proposed to add market-adapted embeddings on the basis of FOREC
to further improve the market adaptation performance. However, their
architecture fails to sufficiently decouple market-specific embeddings
and fails to capture item co-occurrences in global markets. The M3Rec
considers the CMR problem from the perspective of item similarity.
They utilize EASE𝑅 [27] to learn the intra-market similarity on global

arkets. They apply the node2vector [28] on the items’ co-occurrence
eighted matrix to capture the item correlation as the inter-market

tem similarity. After obtaining the intra- and inter-market similarity,
hey leverage them as prior knowledge to fine-tune all local markets.

.2. Attention-based recommendation

Some works utilize the attention mechanism’s excellent sequence
odeling ability to mine the users’ interests according to the user–item

nteraction sequence. For example, Deep Interest Network (DIN) [29]
mploys the attention mechanism adaptively calculating the represen-
ation vector of user interests by considering the relevance of historical
ehaviors given a candidate item. Deep Interest Evolution Network
DIEN) [30] uses GRU [31] to model user behavior sequences, con-
idering sequence information based on DIN. Contrastive Graph Self-
ttention Network (CGSNet) [32] aggregates item representations from

hree distinct graph encoders through an attention-based fusion mod-
le as the global perspective. Meanwhile, it designs a self-attention
ubnetwork to learn the complex item transition information from the
3

ocal perspective. Finally, it introduces a contrastive learning paradigm
based on the two perspectives. Attention mechanism has also been in-
troduced into recommendation algorithms based on knowledge graphs.
For example, Shimizu et al. [33] propose an explainable recommen-
dation framework based on a knowledge graph attention network,
which utilizes the side information of items and realizes high recom-
mendation accuracy. Chen et al. [34] introduced an attention-based
knowledge graph recommendation framework, which utilizes a Col-
laborative Guidance Mechanism to extract information from historical
behaviors and knowledge, resulting in more accurate and tailored
recommendations. The transformer architecture increasingly combines
with recommendation algorithms. For example, Bert4Rec [35] employs
deep bidirectional self-attention to model the user interaction sequence.
UNBERT [36] utilizes the transformer encoder to model the content of
news at the word level and the user behaviors at the new level.

Compared with the existing CMR methods, we creatively employ
the attention-based model, which captures the co-occurrences of items
across markets and avoids the negative transfer. Different from the
existing recommendation models based on the attention mechanism,
we redesign the model and modify the pre-training task according to
the requirements of the CMR task. The problem formulation and details
of our model are in the following sections.

3. Preliminaries

3.1. Problem formulation

In this section, we give the definitions of CMR and notations. The
symbol notations used in this paper are defined in Table 1. Assuming
there are 𝑚 parallel markets 𝑀 = {𝑀1,𝑀2....𝑀𝑚}. Denote the item sets
as 𝐼 = {𝐼1, 𝐼2...𝐼𝑚} and the user sets as 𝑈 = {𝑈1, 𝑈2...𝑈𝑚}. All markets
share the same item set. For the item set of each market, it can be
expressed as:

{𝐼𝑝 ∈ 𝐼 | ∀ 𝑝 ∈ [1, 2, ...𝑚]} (1)

There is a user–item interaction matrix 𝑌𝑡 ∈ {0, 1}|𝑈𝑡|×|𝐼𝑡| for each
market 𝑀𝑡 = (𝑈𝑡, 𝐼𝑡). In the matrix 𝑌𝑡, 𝑦𝑡𝑢𝑣 = 1 represents that the
user 𝑢 likes the item 𝑣. The remains in 𝑌𝑡 are set to 0. We take the
𝑦𝑢𝑣 = 1 records out of the user–item interaction matrix 𝑌𝑡. Then we
group these records by users to generate each user’s historical behaviors
(

𝑠1, 𝑠2....𝑠𝑧
)

, where 𝑧 =
∑𝑚

𝑖=1 |𝑈𝑖|. It is worth noting that in the definition
of this paper, the historical behaviors are not arranged in chronological
order.

The problem can be described as follows: Given the parallel markets
and the historical behavior data of users, our goal is to utilize the global
market data to predict users’ purchase probability in a target mar-
ket and generate recommendation sequences based on the prediction
results.

3.2. Transformer Layer Brief

The Transformer Layer is a bidirectional attention mechanism that
calculates attention scores between any two vectors [37]. As illustrated
in the right part of Fig. 2, the Transformer Layer contains two sub-
layers: the multi-head self-attention sub-layer and the position-wise
feed-forward network. Residual connection [38] and layer normaliza-
tion [39] are applied for both sub-layers individually. That is, the
calculation process of each sub-layer is 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑥 + 𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟(𝑥)),
where 𝑆𝑢𝑏𝑙𝑎𝑦𝑒𝑟(𝑥) is the functions as in Eq. (3) and Eq. (4). The
following is a brief introduction to the sub-layers.

Multi-Head Self-Attention. This sub-layer aims to capture the
contextual representation of each item in the input sequence [40]. The
scaled dot-product attention [37] is defined as:

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾, 𝑉 ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥

(

𝑄𝐾𝑇
√

)

𝑉 (2)

𝑑
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Table 1
Symbol notion.
Symbol Definition

𝑀 = (𝑀1 ,𝑀2 , ..𝑀𝑚) the market set
𝑈𝑡 the user set of market 𝑡
𝐼𝑡 the item set of market 𝑡
𝑠𝑢 = {𝑣1 , 𝑣2 ..., 𝑣𝑛} historical behaviors of user 𝑢
𝐸𝑖 , 𝐸𝑚 item and market-specific embedding matrix
𝑄, 𝐾, 𝑉 the projection matrices corresponding to query, key and value
𝑇 𝑙 = [𝑡𝑙1 , 𝑡

𝑙
2 ..., 𝑡

𝑙
𝑛] the (l+1)th input of the Transformer layer

𝑊 , 𝑏 the learnable projection matrix and bias
𝑦̂ the predicted user–item interaction probability
+ the observed interactions
− the negative samples
𝐸𝐷 the embedding dimension
𝑆𝐿 the max input user interactions length
𝐿 the number of the Transformer Layers
𝐻 the number of the attention heads
Fig. 2. The architecture of the proposed ACMR is displayed, illustrating (a) the framework and (b) the transformer layer utilized in it. The pre-training and fine-tuning stages
are depicted, with distinct colors representing various markets. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)
b
I
F
a
P
t
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a

where 𝑄, 𝐾, 𝑉 are matrix correspondingly representing query, key,
and value. These matrices are linearly projected from 𝑇 𝑙 as in Eq. (3).
Let 𝑇 𝑙 ∈ R𝑛×𝑑 denote the (𝑙 + 1)th input. The multi-head self-attention
MH) applies 𝑔 parallel attention functions to produce the output
epresentations, which are concatenated and linear projected:

𝐻(𝑇 𝑙) = 𝐶𝑜𝑛𝑐𝑎𝑡(ℎ𝑒𝑎𝑑1, ℎ𝑒𝑎𝑑2...ℎ𝑒𝑎𝑑𝑔)𝑊 𝑂

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑇 𝑙𝑊 𝑄
𝑖 , 𝑇 𝑙𝑊 𝐾

𝑖 , 𝑇 𝑙𝑊 𝑉
𝑖 )

(3)

here 𝑊 𝑄
𝑖 ∈ R𝑑× 𝑑

ℎ , 𝑊 𝐾
𝑖 ∈ R𝑑× 𝑑

ℎ , 𝑊 𝑉
𝑖 ∈ R𝑑× 𝑑

ℎ are learnable parameter
matrix for each head. 𝑊 𝑂 ∈ R𝑑×𝑑 is a projection matrix for the
concatenated result.

Position-wise Feed-Forward Network. This sub-layer comprises
two linear projections, with a ReLU activation function intervening.
This configuration is applied uniformly and independently to each
position. Let 𝑇 𝑙 = [𝑡𝑙1; ...; 𝑡

𝑙
𝑛], the calculation process of this sub-layer

is:
𝐶 𝑙 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑇 𝑙 +𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑀𝐻(𝑇 𝑙)))

𝐹 (𝐶 𝑙) = [𝐹𝐹𝑁(𝑐𝑙1); ...;𝐹𝐹𝑁(𝑐𝑙𝑛)]
1 1 2 2

(4)
4

𝐹𝐹𝑁(𝑥) = 𝑅𝐸𝐿𝑈 (𝑥𝑊 + 𝑏 )𝑊 + 𝑏 r
where 𝑊 𝑖, 𝑏𝑖 are learnable parameters. We omit the layer subscript 𝑙
for convenience. While the linear projections are shared across different
positions, they use different parameters from layer to layer.

4. Method

Let 𝑠̂𝑖 denotes an input sequence of ACMR, which is constructed
y concatenating a user’s historical behaviors 𝑠𝑖 and a candidate item.
n this section, we present the details of the proposed ACMR model.
ig. 2 shows the overall architecture of ACMR, which is composed of
n Embedding Layer, 𝐿 stacked bidirectional Transformer Layers and a
rediction Layer. We will cover each component in detail next. This sec-
ion also describes how ACMR is trained and optimized on multi-market
ata.

.1. Embedding layer

For a given item, the corresponding embeddings include the market-
gnostic embedding and the market-specific embedding. The final input
epresentation is constructed by summing them. For market-agnostic
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embeddings, we randomly initialize the learnable matrix 𝐸𝑖 ∈ R|𝑉 |×𝑑 ,
where 𝑑 is the embedding dimension.

Market-specific Embedding. Intuitively, the representation of the
ame item in different markets should be similar but not exactly alike.
o this end, we try to inject market information into the input rep-
esentations. Inspired by the idea of the position embedding and the
egment embedding [37,41], we create a learnable parameter matrix
𝑚 ∈ R|𝑀|×𝑑 as the market-specific embedding. The market-specific
mbeddings model the bias of specific markets so that the same item
as different representations in parallel markets. In this way, the shared
𝑖 can learn the unbiased general knowledge of the items, which re-
uces the negative transfer caused by the mutual interference between
he markets.

Denote a set of market-agnostic embeddings retrieved by an in-
ut sequence as 𝐸̂𝑖

𝑖 ∈ R𝑛×𝑑 , where 𝑛 is the length of the sequence.
ssuming the corresponding market-specific embedding is 𝐸𝑘

𝑚. We
broadcast the market-specific embedding as 𝐸̂𝑘

𝑚 ∈ R𝑛×𝑑 and add to the
market-agnostic embedding to construct the input representation.

𝐸̂𝑖
𝑖𝑛𝑝𝑢𝑡 = 𝐸̂𝑖

𝑖 + 𝐸̂𝑘
𝑚 (5)

4.2. Stacked transformer layers

In this paper, the primary objective of the Transformer Layer is to
capture general item co-occurrences using the self-attention mecha-
nism, thereby acquiring market-agnostic generic knowledge. The self-
attention mechanism is widely employed in the field of natural lan-
guage processing (NLP) to model token sequences and learn general
knowledge [41,42]. In the domain of recommendation systems, the
attention mechanism evaluates the significance of various items in the
item sequence by utilizing learned weights. This aids the model in
comprehensively representing the item sequence [29,35,43]. Drawing
inspiration from these studies, we employ the Transformer Layer to
capture item co-occurrence patterns present in user behavior sequences
across different markets. Overall, the Embedding Layer’s market em-
beddings furnish market-specific information, thereby enhancing the
diversity of item representations. Meanwhile, the Transformer Layer
empowers the model to learn the generality in user behavior through
the self-attention mechanism.

In order to capture more complex interactions between items, we
stack 𝐿 Transformer Layers. However, The risk of overfitting increases
as the network goes deeper. We apply dropout [44] to avoid overfitting.
In summary, ACMR refines the representation sequence as follows:

𝑇 𝑙+1 = 𝑇 𝑟𝑚(𝑇 𝑙), 𝑙 ∈ [0,… , 𝐿 − 1]

𝑇 𝑟𝑚(𝑇 𝑙) = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝐶 𝑙 +𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝐹 (𝐶 𝑙)))

𝐶 𝑙 = 𝐿𝑎𝑦𝑒𝑟𝑁𝑜𝑟𝑚(𝑇 𝑙 +𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑀𝐻(𝑇 𝑙)))

(6)

where 𝑇 𝑙 ∈ R𝑛×𝑑 denote the (𝑙 + 1)th input and 𝑇 0 = 𝐸̂𝑖𝑛𝑝𝑢𝑡. 𝑇 𝑟𝑚() note
the Transformer Layer described in Section 3.2.

4.3. Prediction layer

After the hierarchical interaction of 𝐿 layers across all positions in
the previous module, we get the final item representation sequence 𝑇 𝐿.
The representation of each position contains the implicit context infor-
mation. In order to adapt to the recommendation task, in this section,
we explicitly model the user and predict the purchase probability.

Explicit User Modeling. In order to make a personalized recom-
mendation, we generate an explicit user representation based on 𝑇 𝐿,
which models the user interests. In the NLP field, Sentence-Bert [45]
experimented with three pooling methods to derive semantically mean-
ingful sentence embedding: Using the output representation of the
special token, computing a max-over-time of the output vectors, and
computing the mean of all output vectors. Compared to using special
5

tokens and taking the maximum value, the average strategy does not
Algorithm 1: Model Training Algorithm
Input: 𝐼 , 𝑀 , target market 𝑀𝑡, parameter set 𝛩, global data

𝐷𝑡𝑟𝑎𝑖𝑛 and 𝐷𝑣𝑎𝑙𝑖𝑑
Hyperparameter: iter
Output: 𝛩′

1 model parameter 𝛩 initialization;
2 𝑆 ← metrics are initialized as 0;
Pre-train Stage

3 for 𝑖 in 𝑖𝑡𝑒𝑟 do
4 𝛩 ← Train(𝛩, 𝐼, 𝑀, 𝐷𝑡𝑟𝑎𝑖𝑛);
5 𝑆′ ← Evaluate(𝛩, 𝐼, 𝑀, 𝐷𝑣𝑎𝑙𝑖𝑑);
6 if 𝑆′ > 𝑆 then
7 𝛩′ ← 𝛩;
8 𝑆 ← 𝑆′

9 end
10 end
Fine-tune Stage

11 𝑆 ← 0;
12 𝐷𝑡𝑟𝑎𝑖𝑛 ← Filter(𝐷𝑡𝑟𝑎𝑖𝑛, 𝑀𝑡);
13 𝐷𝑣𝑎𝑙𝑖𝑑 ← Filter(𝐷𝑣𝑎𝑙𝑖𝑑 , 𝑀𝑡);
14 for 𝑖 in 𝑖𝑡𝑒𝑟 do
15 𝛩 ← Train(𝛩, 𝐼, 𝑀𝑡, 𝐷𝑡𝑟𝑎𝑖𝑛);
16 𝑆′ ← Evaluate(𝛩, 𝐼, 𝑀𝑡, 𝐷𝑣𝑎𝑙𝑖𝑑);
17 if 𝑆′ > 𝑆 then
18 𝛩′ ← 𝛩;
19 𝑆 ← 𝑆′

20 end
21 end

make distinct choices regarding which part of the sequence is more im-
portant than others. As a result, it captures general information without
overly focusing on specific features [46]. Taking inspiration from this,
in the field of recommendation systems, we aim to retain the complete
historical interest information of users. Therefore, we adopt the average
pooling strategy for explicit user modeling. By doing so, similar users
are positioned closely in the vector space, which aligns with the concept
of user modeling in collaborative recommendation [47,48].

𝑡𝑢𝑠𝑒𝑟 = 𝑀𝑒𝑎𝑛𝑃𝑜𝑜𝑙𝑖𝑛𝑔(𝑡𝐿1 , 𝑡
𝐿
2 ,… , 𝑡𝐿𝑛−1) (7)

where [𝑡𝐿1 , 𝑡
𝐿
2 ,… , 𝑡𝐿𝑛−1] ∈ 𝑇 𝐿 are the item representations corresponding

to the user’s historical behaviors.
Probability Prediction. We concatenate the user representation

𝑡𝑢𝑠𝑒𝑟 and the candidate item representation 𝑡𝐿𝑛 as the input of this layer.
Drawing on the design of prediction layers used in downstream tasks
within the field of NLP [41], and similar to earlier recommendation
algorithms that employ self-attention mechanisms for modeling item
sequences [35], we employ a single-layer feedforward network as the
prediction layer. Additionally, we utilize a 𝑆𝑖𝑔𝑚𝑜𝑖𝑑 activation function
to estimate the probability of a user engaging with the candidate item.

𝑦̂ = 𝜎
(

𝐶𝑜𝑛𝑐𝑎𝑡(𝑡𝑢𝑠𝑒𝑟, 𝑡𝐿𝑛 )𝑊 + 𝑏
)

(8)

where 𝑊 ∈ R2𝑑×1 and 𝑏 are learnable parameters. 𝜎 is the 𝑆𝑖𝑔𝑚𝑜𝑖𝑑
activate function. We empirically find that increasing the number
of layers of the fully connected layer does not improve the perfor-
mance. Presumably, because the stacked Transformer Layers already
have enough fitting ability.

4.4. Model training

The training process of ACMR consists of two steps: pre-training and
fine-tuning. The same loss function is used in both stages as follows,

 =
∑

𝑦𝑠𝑢 ,𝑖 log(𝑦̂𝑠𝑢 ,𝑖) +
(

1 − 𝑦𝑠𝑢 ,𝑖
)

log
(

1 − 𝑦̂𝑠𝑢 ,𝑖
)

(9)

(𝑠𝑢 ,𝑖)∈+∪−
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Table 2
Statistics of the preprocessed dataset. Markets are arranged from left to right in order
of the number of interactions from largest to smallest. The ‘‘Avg.length’’ means the
average length of the user interactions.

𝐶𝐴 𝑈𝐾 𝐹𝑅 𝐷𝐸 𝑀𝑋 𝐽𝑃 𝐼𝑁 total

#User 4668 3352 1838 1851 1878 487 239 14 313
#Item 5735 3251 1879 2179 1645 955 470 8304
#Ratings 44 779 31 547 17 624 17 300 17 095 4485 2015 134 845
#Avg.length 9.6 9.4 9.6 9.3 9.1 9.2 8.4 9.2

where + denotes the observed interactions in 𝑌 , and − denotes the
negative instances, which are sampled from unobserved interactions.
The target label 𝑦𝑠𝑢 ,𝑖 values 0 or 1 denoting whether 𝑢 has interacted

ith 𝑖. We adopt mini-batch Adam [49] to train the model and update
he parameters.

The distinction between pre-training and fine-tuning lies in the data
tilized. During the pre-training phase, our model is trained on data
rom various parallel markets, resulting in a market-agnostic model.
his model yields generalized recommendation performance and latent

tem representations encompassing universal knowledge. Furthermore,
he market-specific embedding models the biases present in different
arkets in this phase. The fine-tuning phase exclusively employs data

rom the target market to eliminate noise from other markets and
ustomize the model to fit the target market. In essence, the initial
re-training on global markets facilitates the acquisition of general
nowledge, while subsequent fine-tuning directs the model’s attention
owards the specific market.

In contrast to previous pre-trained models [35,41,50,51], we em-
loy the same task for both pre-training and fine-tuning stages. Earlier
esearch utilized the 𝐶𝑙𝑜𝑧𝑒 task [52] during pre-training primarily to
repare for various downstream tasks. However, our model focuses
n a single downstream task, rendering the use of different tasks
nnecessary across the two phases. Furthermore, utilizing a consistent
raining task addresses the performance gap caused by inconsistent
asks between these stages. In our setting, the pre-training process
s generic, allowing for easy deployment in new markets by simply
oading pre-trained parameters and fine-tuning them for the target
arket. Additionally, within the pre-train and fine-tune paradigm we
ave adopted, our model can be efficiently deployed in a cold-start
arget market by fine-tuning the globally pre-trained model for local
arket differences.

. Experiment and discussion

.1. Experimental setup

Dataset. Following FOREC [6], our model is assessed on the elec-
ronics category of the XMarket dataset,2 comprising seven parallel
arkets originating from various regions across three continents: Ger-
any (𝐷𝐸), Canada (𝐶𝐴), Japan (𝐽𝑃 ), India (𝐼𝑁), France (𝐹𝑅),
exico (𝑀𝑋), and the United Kingdom (𝑈𝐾). Same as the previous
orks [6,8,53,54], we filtered the users and items that there exist less

han five interactions.3 These selected parallel markets exhibit varia-
ions in size, culture, and evaluation of the CMR model’s performance.
he detailed information of the preprocessed datasets is shown in
able 2. To gain a better understanding of the variation in data quantity
cross different markets, we arrange the markets in Table 2 from left
o right based on the number of ratings. Notably, 𝐶𝐴 and 𝑈𝐾 are the
argest markets with significantly higher interaction volumes compared
o other markets. Conversely, 𝐽𝑃 and 𝐼𝑁 are the smallest in terms of
ata availability.

2 https://xmrec.github.io/
3 The processed data is available at https://github.com/hamedrab/FOREC
6

Baselines. We use several popular recommendation models as base-
line methods for comparison, which could be categorized into five
classes: (1) Traditional methods: NeuMF [7] and Wide&Deep [55],
(2)Cross-market methods: FOREC [6] and M3Rec [8], (3) Attention-
ased method: Bert4Rec [35], (4) Cross-domain methods: CoNet [15]
nd DDTCDR [16], (5) Multi-domain (task) methods: Cross-Stitch [22]
nd MMoE [23].

• NeuMF is a neural network-based collaborative filtering model. It
ensembles matrix factorization (MF) and multi-layer perceptron
(MLP) so that it unifies the strengths of linearity of MF and
non-linearity of MLP for modeling the user–item latent structures.

• Wide&Deep is a popular two-tower recommendation model based
on neural networks. It jointly trains 𝑤𝑖𝑑𝑒 linear models and 𝑑𝑒𝑒𝑝
neural networks to combine the benefits of memorization and
generalization for recommender systems.

• Bert4Rec employs the deep bidirectional self-attention to the
sequential recommendation task. It adopts the 𝐶𝑙𝑜𝑧𝑒 objective
to train the model, predicting the random masked items in the
sequence by joint conditioning on their left and right context.

• FOREC is a recommendation model for CMR, which is a combi-
nation of a NeuMF as the shared bottom across parallel markets
and several fully connected layers as the market-specific head.
Different from the origin paper using one specific market to
train the bottom, we use all markets except the target market
as source markets to train the bottom in our implementation.
We experimentally observed that our implementation performed
better.

• M3Rec is the state-of-the-art cross market recommendation
method. It first calculates two global item similarities: intra- and
inter-market similarities. It learns the intra-market similarity by
adopting linear models with closed-form solutions and then cap-
tures the high-order inter-market similarity by the random walk.
Then, it incorporates the global item similarities and conducts the
market adaptation operation for each target market.

• CoNet is a deep transfer learning approach for cross-domain
recommendation. It leverages neural networks as the base model
and incorporates cross-connections between hidden layers of two
base networks to enable dual knowledge transfer across domains,
effectively addressing the data sparse issue in recommender sys-
tems.

• DDTCDR is a cross-domain recommendation model that utilizes
dual learning to transfer information between two related do-
mains in order to provide recommendations. It incorporates a
novel latent orthogonal mapping technique to extract user prefer-
ences across multiple domains while preserving relations between
users and combines it with an autoencoder approach to extract
the latent essence of feature information.

• Cross-Stitch aims to learn shared representations by introduc-
ing a new sharing unit called the ‘‘cross-stitch’’ unit. The unit
combines activations from multiple networks and can be trained
end-to-end, allowing the network to learn an optimal combination
of shared and domain-specific representations across multiple
domains.

• MMoE adapts the Mixture-of-Experts (MoE) structure by sharing
expert submodels across all domains while utilizing a gating net-
work trained to optimize each domain, allowing for simultaneous
learning of multiple goals and domains.

Implementation Details. For FOREC,4 NeuMF,5 CoNet,6 DDTCDR7

nd Bert4Rec,8 we use the code provided by the corresponding authors.

4 https://github.com/hamedrab/FOREC
5 https://github.com/hexiangnan/neural_collaborative_filtering
6 https://github.com/njuhugn/CoNet
7 https://github.com/lpworld/DDTCDR
8
 https://github.com/FeiSun/BERT4Rec

https://xmrec.github.io/
https://github.com/hamedrab/FOREC
https://github.com/hamedrab/FOREC
https://github.com/hexiangnan/neural_collaborative_filtering
https://github.com/njuhugn/CoNet
https://github.com/lpworld/DDTCDR
https://github.com/FeiSun/BERT4Rec
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Table 3
The overall experimental results. Specifically, the ‘‘++’’ notation signifies the model trained on all parallel markets. The optimal results are designed in bold. Sub-optimal results
are annotated with underlining.

Models Recall

𝐷𝐸 𝐽𝑃 𝐼𝑁 𝐹𝑅 𝐶𝐴 𝑀𝑋 𝑈𝐾

R@5 R@10 R@5 R@10 R@5 R@10 R@5 R@10 R@5 R@10 R@5 R@10 R@5 R@10

single
NeuMF 0.4262 0.5445 0.2936 0.4045 0.4895 0.5397 0.3993 0.5375 0.4385 0.5511 0.6070 0.6879 0.4821 0.5915
Wide&Deep 0.4424 0.5861 0.3470 0.4579 0.4686 0.5313 0.4020 0.5484 0.4732 0.5936 0.6395 0.7215 0.5122 0.6300
Bert4Rec 0.4349 0.5483 0.2936 0.3696 0.4686 0.5397 0.3835 0.5152 0.4331 0.5207 0.6102 0.6741 0.4949 0.5897

multiple

NeuMF++ 0.5386 0.7023 0.4476 0.5995 0.5481 0.7154 0.5554 0.7317 0.4061 0.5426 0.6709 0.7667 0.5420 0.6655
Wide&Deep++ 0.5586 0.7044 0.4024 0.5893 0.5439 0.7154 0.5636 0.7426 0.3969 0.5353 0.6751 0.7651 0.5575 0.6894
Bert4Rec++ 0.4932 0.5921 0.4065 0.5092 0.4142 0.5732 0.5010 0.6180 0.3487 0.4539 0.6549 0.7316 0.4812 0.5763
CoNet 0.5197 0.6067 0.4189 0.5175 0.5439 0.5941 0.4755 0.5811 0.3935 0.4002 0.6874 0.7513 0.5301 0.6143
DDTCDR 0.5500 0.6126 0.4559 0.5175 0.6109 0.6444 0.5343 0.5952 0.4644 0.5831 0.7210 0.7508 0.5325 0.6438
MMoE 0.5375 0.6202 0.4168 0.5072 0.5272 0.5774 0.5169 0.5996 0.4621 0.5874 0.6821 0.7343 0.5382 0.6122
Cross-Stitch 0.5321 0.6397 0.3922 0.5010 0.5356 0.5941 0.5484 0.6382 0.4916 0.5968 0.7034 0.7529 0.5495 0.6432
FOREC 0.6347 0.7612 0.5893 0.6878 0.6820 0.7656 0.6479 0.7747 0.4963 0.5886 0.7587 0.8093 0.6357 0.7395
M3Rec 0.6185 0.7039 0.2731 0.3552 0.4769 0.5313 0.6512 0.7431 0.4033 0.4792 0.7539 0.8104 0.5817 0.6628
ACMR 0.6611 0.7931 0.6308 0.7888 0.7163 0.8033 0.6919 0.8239 0.5196 0.6359 0.7941 0.8739 0.6481 0.7636

Models NDCG

𝐷𝐸 𝐽𝑃 𝐼𝑁 𝐹𝑅 𝐶𝐴 𝑀𝑋 𝑈𝐾

N@5 N@10 N@5 N@10 N@5 N@10 N@5 N@10 N@5 N@10 N@5 N@10 N@5 N@10

single

NeuMF 0.3020 0.3404 0.1911 0.2271 0.3524 0.3675 0.2745 0.3189 0.3173 0.3540 0.5096 0.5358 0.3758 0.4113
Wide&Deep 0.3140 0.3603 0.2507 0.2861 0.3558 0.3751 0.2779 0.3250 0.3452 0.3843 0.5301 0.5567 0.4001 0.4381
Bert4Rec 0.3126 0.3494 0.2053 0.2297 0.3636 0.3868 0.2603 0.3029 0.3170 0.3456 0.5129 0.5337 0.3860 0.4167

multiple

NeuMF++ 0.3789 0.4325 0.2819 0.3312 0.3157 0.3705 0.3845 0.4416 0.2738 0.3182 0.5637 0.5945 0.4257 0.4658
Wide&Deep++ 0.3981 0.4456 0.2664 0.3268 0.3339 0.3896 0.3960 0.4543 0.2669 0.3119 0.5641 0.5934 0.4293 0.4721
Bert4Rec++ 0.3577 0.3900 0.2692 0.3031 0.2596 0.3121 0.3658 0.4034 0.2420 0.2761 0.5620 0.5868 0.3883 0.4191
CoNet 0.3996 0.4279 0.3060 0.3375 0.4967 0.5130 0.3638 0.3984 0.3357 0.3380 0.6264 0.6472 0.4356 0.4628
DDTCDR 0.4822 0.5023 0.3961 0.4160 0.5660 0.5767 0.4564 0.4763 0.3604 0.3988 0.6772 0.6868 0.4251 0.4610
MMoE 0.4622 0.4889 0.3360 0.3654 0.4928 0.5083 0.4469 0.4738 0.3315 0.3721 0.6492 0.6662 0.4754 0.4993
Cross-Stitch 0.4280 0.4628 0.3137 0.3492 0.4654 0.4844 0.4390 0.4678 0.3884 0.4225 0.6549 0.6711 0.4687 0.4988
FOREC 0.4821 0.5233 0.4187 0.4510 0.5703 0.5983 0.4818 0.5238 0.3685 0.3986 0.6595 0.6759 0.4967 0.5306
M3Rec 0.4998 0.5278 0.2292 0.2553 0.4317 0.4489 0.5220 0.5518 0.3174 0.3419 0.6792 0.6976 0.4855 0.5118
ACMR 0.5032 0.5462 0.4731 0.5243 0.6066 0.6345 0.5194 0.5622 0.3933 0.4310 0.6938 0.7198 0.5172 0.5546
For Wide&Deep, MMoE, Corss-Stitch and M3Rec, we implement them
with PyTorch according to the original papers. We employ PyTorch
for the implementation of our ACMR model. To adapt Cross-Stitch and
MMoE for the CMR task, we leverage shared user and item embeddings
across different markets. The recommendation task in the target mar-
ket and other markets are treated as different tasks that are trained
simultaneously. During model training, the embeddings from different
markets are averaged and used as the input for the model. In line with
Bonab et al. [6], we have adapted DDTCDR for CMR by establishing
connections between the item features in the MLP networks of the
two markets. Similarly, we have made analogous modifications to the
network structure of CoNet.

Hyperparameters Setting. We use Adam [49] to optimize all the
models. For common hyperparameters in all models, we test the batch
size of [512, 1024, 2048], the learning rate of [1e−3, 5e−4, 1e−4, 5e−5],
and the latent dimension of [8, 16, 32, 64, 128]. We consider the 𝓁2
regularization in [1e−5, 1e−6, 1e−7]. In order to avoid overfitting,
we apply a fixed dropout rate of 0.3 to all models. All other hyper-
parameters either follow the suggestion from the methods’ authors or
are tuned on the validation sets. We report the results of each baseline
under its optimal hyperparameter settings. We apply the early stopping
strategy with 50 epochs for all baselines and our model. To mitigate
the impact of random variations, we randomly split the datasets and
conduct five independent replicate experiments. The reported results
are the average performance across these five independent replicate
experiments. We train our model with a learning rate of 1e−3, 𝓁2
regularization of 1𝑒−7, batch size of 1024, and the latent dim of 32. After
tuning the hyperparameters, we set the layer number 𝐿 = 4, the head
number 𝑔 = 8, and the maximum sequence length as 50. For all models,
We randomly sampled 4 negative instances per positive instance in the
training set. The training device employed was a single 24G NVIDIA
TITAN RTX.
7

Evaluation Metrics. We employ two commonly used metrics,
namely 𝑁𝐷𝐶𝐺@𝐾 and 𝑅𝑒𝑐𝑎𝑙𝑙@𝐾, to assess the quality of the rank
lists generated by all the methods. The evaluation of these metrics is
conducted at two specific cut-off points: 5 and 10. Similar to previous
works [6,7], we construct the ground truth using the purchasing
behavior by considering an item as relevant if the user gives a rating.
We follow a long line of literature and use the leave-one-out strategy for
validation and test [7,55–58]. Specifically, for each user, we randomly
sample one interaction for validation and one for testing. In addition,
we follow the literature and sample 99 negative items for each user in
our evaluations.

5.2. Experimental results & discussion

Table 3 shows the experimental results of the ACMR against the
baselines in terms of 𝑅𝑒𝑐𝑎𝑙𝑙@𝐾 and 𝑁𝐷𝐶𝐺@𝐾 on all markets. The
discrepancy between ‘‘single’’ and ‘‘multiple’’ in Table 3 lies in the
volume of data employed for model training. ‘‘Single’’ denotes the
practice of training the target market, whereas ‘‘multiple’’ refers to
training the model on data sourced from all parallel markets. According
to the results, we have the following insightful observations:

• Our ACMR achieves the best performance on almost all markets
and metrics, significantly outperforming the state-of-the-art CMR
model M3Rec. Compared with the second-best model, ACMR has
an average improvement of 4.82%, 3.87%, 6.82% and 5.34% on
𝑅𝑒𝑐𝑎𝑙𝑙@5, 𝑁𝐷𝐶𝐺@5, 𝑅𝑒𝑐𝑎𝑙𝑙@10 and 𝑁𝐷𝐶𝐺@10, respectively.
This observation indicates that our model can best make full
use of the information on parallel markets. In addition, we find
that CMR models (ACMR, FOREC, and M3Rec) generally perform
better than traditional methods and attention-based methods.
This observation indicates that the CMR method can make full

use of multi-market information than other methods.
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• Comparing CMR models (ACMR, FOREC, and M3Rec), we observe
that ACMR has a significant improvement in two data-scarce
markets: 𝐽𝑃 and 𝐼𝑁 , with an improvement of 16.25%, 6.05%
in terms of 𝑁𝐷𝐶𝐺 and 14.68%, 4.92% in terms of 𝑅𝑒𝑐𝑎𝑙𝑙. This
observation indicates that our model can best protect the small
markets from the interference of other markets and avoid negative
transfers while benefiting from global information.

• Our model exhibits a 0.49% lower performance compared to the
optimal model M3Rec on 𝑁𝐷𝐶𝐺@5 in the 𝐹𝑅 market. Neverthe-
less, it is noteworthy that the performance of the M3Rec model
displays considerable volatility across different markets. Notably,
our model surpasses M3Rec by 106.4% on the 𝐽𝑃 dataset regard-
ing 𝑁𝐷𝐶𝐺@5. This disparity in performance can be attributed
to M3Rec’s reliance on item similarity to transfer global market
information. In certain markets, especially those with substantial
differences from other markets (e.g., 𝐽𝑃 and other European
markets), item similarity can result in negative transfer, leading
to a decline in performance. Therefore, considering the stability
of performance and the generalizability, our model remains the
best.

• When comparing the performance of traditional recommendation
models, such as NeuMF and Wide&Deep, trained on single-market
(‘‘single’’) and multi-market (‘‘multiple’’) datasets, it is evident
that they generally exhibit superior performance when trained
on multi-market data. Intuitively, more market data brings more
user–item interaction information, which is beneficial to improv-
ing the performance of recommendations. However, traditional
recommendation algorithms cannot make full use of multi-market
data because they cannot block out noises from other markets.

• Our findings indicate that the performance of the modified CDR
models consistently falls short when compared to the CMR mod-
els. We attribute this discrepancy to two factors: Firstly, the
foundational assumption of CDR, which posits that user interests
are stable across domains (e.g., users fond of romantic films
are likely to enjoy romantic books), is not applicable within
the CMR task. CDR models are designed to capture the cross-
domain interest consistency, yet such congruence is absent in
the CMR task, thereby impeding knowledge transfer for CDR
models. Secondly, the lack of domain-specific information in
CDR models poses a significant challenge for accurately mod-
eling domain characteristics. Many CDR models, such as CoNet
and DDTCDR, utilize domain-specific attributes (like directors of
movies or genres of books) as inputs, facilitating the distinction
between domains. Conversely, the CMR task often lacks corre-
sponding market-specific features for both items and users, which
impairs the models’ ability to effectively distinguish between
distinct markets.

• We observe that the modified multi-domain learning models,
namely Cross-Stitch and MMoE, generally underperform com-
pared to the CMR model. This underperformance may be at-
tributed to the inherent design of multi-domain learning models,
which are constructed to simultaneously learn from multiple tasks
within various domains by capitalizing on their mutual inter-
dependencies [59]. However, since the CMR task involves user-
decoupled recommendation scenarios, the correlation between
recommendation tasks across different markets is relatively weak.
On the other hand, we notice that Cross-Stitch achieves subopti-
mal performance on the 𝐶𝐴 dataset. We posit that this is due to
two main reasons. Firstly, the unique attributes of the 𝐶𝐴 dataset
itself must be considered; being the largest among the datasets,
it exhibits the least significant data imbalance when serving as
the target market. Secondly, the architecture of Cross-Stitch, with
its simple yet efficient mechanism for transferring network infor-
mation, has demonstrated commendable performance in various
fields, including computer vision and recommendation systems.
It is low coupling to specific scenarios and robust generalization
capabilities [22] make it more easy to adaptation within the CMR
context.
8
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.3. Ablation experiments

To gain a deeper comprehension of the effects of market-specific
mbedding, multiple markets data, and fine-tuning, we perform ab-
ation experiments. The results of these experiments are presented
n Fig. 3. Based on the obtained findings, we have the following
bservations:

• w/o market-specific emb. As depicted in Fig. 3, when market-
specific embeddings are removed, there is an average perfor-
mance reduction of 2.27% and 1.61% across two metrics in seven
market datasets. Significantly, we note a marked enhancement
in the performance of the model in two of the most data-sparse
markets, 𝐽𝑃 and 𝐼𝑁 , upon the integration of market-specific
embeddings (with an average increase of 3.36% for 𝐽𝑃 and 9.00%
for 𝐼𝑁 across two metrics). Smaller markets are intuitively more
susceptible to interference from other markets in CMR due to their
lack of sufficient data for fine-tuning pre-trained models. Our pro-
posed market-specific embeddings effectively reduce noise from
other markets, thereby preventing negative transfer while still
leveraging auxiliary data from those markets for data-sparse mar-
kets. Concurrently, we find that the improvement brought by
market-specific embeddings is not significant for relatively large
markets (𝐹𝑅, 𝐶𝐴, 𝑀𝑋, and 𝑈𝐾), with a slight decrease even
observed in the 𝐷𝐸 market. We posit that this is because data-
rich markets can effectively fine-tune the model to fit the target
market, and the issue of negative transfer is relatively minor
for these markets. Therefore, we conclude that market-specific
embeddings are more beneficial for data-sparse markets.

• w/o multiple markets. The deep blue bars in Fig. 3 shows the
results without training the model with multi-market data. When
training only using single-market data, the 𝑅𝑒𝑐𝑎𝑙𝑙@5, 𝑅𝑒𝑐𝑎𝑙𝑙@10,
𝑁𝐷𝐶𝐺@5 and 𝑁𝐷𝐶𝐺@10 on average are reduced by 30.99%,
27.36%, 32.91% and 34.88%. ACMR trained on multi-market
data performs better across all markets in all metrics compared to
using single-market data. This observation indicates that ACMR is
suitable for the CMR task and is effective in transferring knowl-
edge across markets.

• w/o fine-tuning. As the orange bars shown in Fig. 3, ACMR
without fine-tuning performs worse on the 𝑅𝑒𝑐𝑎𝑙𝑙@5, 𝑅𝑒𝑐𝑎𝑙𝑙@10,
𝑁𝐷𝐶𝐺@5 and 𝑁𝐷𝐶𝐺@10 by 11.22%, 7.69%, 15.27% and
17.28%. This observation justifies the need for fine-tuning. Fine-
tuning prompts the model to focus on the current market and
filter out noises from other markets. We found that fine-tuning
has a larger performance improvement for markets with small
data volumes and a smaller improvement of about 1% for the
largest market, 𝐶𝐴. This observation indicates that small markets
are more susceptible to interference, and fine-tuning is more
necessary for small markets.

.4. Item representation visualization

To further investigate the functioning of cross-market pre-training
nd market-specific embeddings, we employ the UMAP [60] algorithm
o convert the item representations of ACMR into low dimension and
isualize them, as depicted in Fig. 4. Embedding vectors for different
arkets are drawn in different colors. To reduce randomness caused by
arameter initialization, we maintain fixed randomly generated seeds
or model parameters. Fig. 4(a) presents the visualization results of item
mbeddings after respectively training our model on seven datasets,
hile Fig. 4(b) illustrates the visualization results of item embeddings
ithout market-specific embeddings after pre-training our model on all
arallel market data. Furthermore, Fig. 4(c) displays the visualization
esults of item representations after pre-training our model on all
arallel market data. By comparing Fig. 4, we have the following
bservations:
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Fig. 3. The results of ablation experiments.
Fig. 4. UMAP visualization of item representations.
• Shared Vector Space. As depicted in Figs. 4(b) and 4(c), the item
representations disperse within a unified vector space through
cross-market training. In contrast, Fig. 4(a) demonstrates that
training in separate markets yields item embeddings distributed
across distinct vector spaces. Similar to cross-lingual word em-
bedding in the NLP field [61,62], projecting item representations
into the same vector space proves advantageous for knowledge
transfer. This discovery signifies the effectiveness of our model in
capturing item co-occurrence relationships across diverse markets
and facilitating efficient knowledge transfer.

• Modeling Market Bias. By comparing Figs. 4(b) and 4(c), it
is evident that market-specific embedding captures the various
biases among different markets. Notably, although both figures
present that item representations are distributed in the same
vector space, the inclusion of market-specific embeddings results
in a more balanced distribution of item representations within
that space. Furthermore, market-specific embeddings also enable
modeling the similarity between markets, enhancing the model’s
9

ability to differentiate the co-occurrence patterns of items across
distinct markets.

5.5. Item co-occurrences study

In this section, our objective is to explore the efficacy of our pro-
posed method in capturing item co-occurrence patterns across diverse
markets. Our investigation is twofold: Initially, we undertake an ex-
periment wherein the pre-training dataset excludes the target market’s
training set, incorporating only data from other markets. The outcomes
of this experiment are detailed in Table 4. Subsequently, we conduct
a case study to examine the impact of the attention mechanism in
modeling item co-occurrences. For this purpose, we select users.9 from
various markets, all of whom have historical behavior pattern with

9 Specifically, the selected users are #7811 from 𝐷𝐸, #4380 from 𝑈𝐾, #2603
from 𝐹𝑅, and #5 from 𝐽𝑃 .
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Table 4
The term ‘‘Pre-train∗‘‘ refers to this process of pre-training on a non-target market dataset. Subsequently, the term ‘‘Fine-tune∗’’ denotes the process of fine-tuning
within the target market using parameters derived from the aforementioned pre-training phase.

DE JP IN FR CA MX UK

R@5 N@5 R@5 N@5 R@5 N@5 R@5 N@5 R@5 N@5 R@5 N@5 R@5 N@5

Pre-train∗ 0.4602 0.3220 0.3778 0.2469 0.2175 0.1344 0.4678 0.3345 0.1733 0.1106 0.5702 0.4985 0.4477 0.3433
Fine-tune∗ 0.6600 0.5014 0.6036 0.4699 0.6359 0.5362 0.6795 0.5147 0.5085 0.3826 0.7310 0.6417 0.6190 0.4951
ACMR 0.6611 0.5032 0.6308 0.4731 0.7163 0.6066 0.6919 0.5194 0.5196 0.3933 0.7941 0.6938 0.6481 0.5172
Fig. 5. Heatmaps of attention coefficients. Darker colors represent higher attention weights. The number on the axis represents the item ID. The item co-occurrence pattern is
marked in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
items #64, #164, and #197. We average the attention coefficients of all
eads in the last layer of the model and then plot them as heatmaps, as
hown in Fig. 5 Drawing on the results of these experiments, we derive
everal significant observations.

• Observing the row ‘‘Pre-train∗’’ in Table 4, it is evident that our
model continues to perform well on the target test set, even when
pre-trained on a dataset that lacks the target market data. In
some instances, such as 𝐷𝐸 and 𝑈𝐾, the model’s performance
is comparable to the cross-domain and multi-domain baselines.
We attribute this outcome to our model’s capability to effectively
capture item co-occurrence. Despite being trained exclusively on
data from other markets, our model can grasp general knowledge,
specifically item co-occurrence, thereby offering a generalization
capability on the target market.

• A comparison of the rows ‘‘Fine-tune∗’’ and ‘‘ACMR’’ in Ta-
ble 4 reveals that ‘‘Fine-tune*’’ delivers competitive performance.
10
‘‘Fine-tune∗’’ represents the market cold-start scenario, meaning,
for a new market, it signifies the outcome of fine-tuning a model
pre-trained on data from other markets. This observation illus-
trates our model’s capacity for general knowledge transfer and
its ability for swift fine-tuning deployment to new markets in
potential real-world scenarios.

• An examination of Fig. 5 shows that the mutual attention coeffi-
cients of the general item co-occurrence pattern in these four mar-
kets are relatively high. This implies that the attention mechanism
identifies the cross-market item co-occurrence through higher
attention weights. For instance, in the 𝐷𝐸 market, the two items
with the highest attention coefficient for item #64, besides itself,
are #164 and #197. Similar trends can also be observed for 𝐹𝑅,
𝐽𝑃 , and 𝑈𝐾. This observation provides an intuitive demonstra-
tion of the effectiveness of the attention mechanism in capturing
general item co-occurrence patterns.
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Fig. 6. Results of hyperparameter sensitivity experiments.
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.6. Hyperparameter sensitivity experiment

To explore the effect of hyperparameters on model performance,
e perform hyperparameter sensitivity experiments, including the em-
edding dimension (ED), the max user’s historical behavior sequence
ength (SL), the transformer layer number 𝐿 and the attention head
umber 𝐻 . For simplicity, we only report the results of 𝐷𝐸 while the
ituation is similar in other markets. We will analyze the impact of each
yperparameter on model performance in detail below.

• The impact of ED. The results of the hyperparameter sensitivity
experiments for ED are presented in Fig. 6(a), which show that
the model’s performance initially improves and then declines as
the dimension increases. However, it is important to note that
larger dimensions require more memory and computing time.
While high-dimensional embeddings offer stronger representation
capabilities, they also pose a higher risk of overfitting. Taking
into account the trade-off between time efficiency and model
performance, we have decided to utilize 32 dimensions as the
embedding dimension.

• The impact of SL. SL refers to the maximum length of the
user historical behavior sequence that is fed into the model. The
experimental results for different values of SL are presented in
Fig. 6(b). We conducted experiments with SL values of 30, 40,
50, 60, and 70. It was observed that as SL increases, the model
performance initially improves and then deteriorates. A shorter
SL may not accurately capture the user’s interests, while a longer
SL increases computational complexity and may introduce noise.
Therefore, we believe that the choice of SL should consider both
the average length of user behavior sequences and time efficiency.

• The impact of L. The experimental results of hyperparameter
sensitivity for L are displayed in Fig. 6(c). It is evident from
the results that as the number of transformer blocks increases,
the metrics initially improve and then decline. The transformer
architecture possesses strong fitting capabilities, but excessive
blocks can lead to overfitting issues. Taking into account the
balance between performance and time efficiency, we believe that
opting for three or four blocks is suitable for the current datasets.
11

t

• The impact of H. The multi-head mechanism enables the model
to project embeddings into multiple subspaces, enabling it to
focus on different aspects of information. We conducted tests to
assess the model’s performance and time efficiency with different
numbers of heads, H, ranging from 2 to 16. The results, as illus-
trated in Fig. 6(d), indicate that the model achieves the highest
performance when H = 4. Increasing the number of heads beyond
this value does not enhance performance.

. Conclusion & future work

In this paper, we proposed a novel model, ACMR, which employs
ransformer encoder blocks for the CMR task. In order to both uti-
ize cross-market information and eliminate the mutual interference
etween different markets, we designed market-specific embeddings to
odel each market. We modified the structure of the transformer block

nd designed an explicit user modeling component to make it suitable
or recommendation tasks. We conducted extensive experiments on
ommodity datasets from seven countries on three continents. Our
odel outperforms the second-best model by 4.82%, 6.82%, 3.87%,

nd 5.34% in terms of four metrics, respectively. The experimental
esults show that our model is the state-of-the-art CMR model. We
onducted ablation experiments and hyperparameter sensitivity tests
o analyze the effectiveness of our model and the influence of hyper-
arameter settings. The experimental results indicate that our model is
ble to learn the general knowledge of items and effectively transfer
nformation across parallel markets.

In the future, at the model design level, we will explore how to
ncorporate user-side information (e.g., age, gender, and language) and
tem-side information (e.g., category, review, and price) into ACMR. We
ope that more auxiliary information helps improve the performance
nd facilitates knowledge transfer. At the market research level, we
ill further explore how to model the bias of markets in more tiny
ranularity and find ways to visualize market similarities to improve
he interpretability of algorithms.
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